[대전=뉴스프리존] 이기종 기자= 한국과학기술원(KAIST)은 산업및시스템공학과 이재길 교수팀이 코로나19 해외유입 확진자 수를 예측하는 빅데이터‧인공지능(AI) 기술을 개발했다고 19일 밝혔다.
최근 전 세계적으로 코로나바이러스감염증-19(COVID-19) 확진자 수가 2,000만 명을 넘어선 가운데 최근 국내에서도 코로나19 확진자 수가 급증해 2차 대유행 가능성이 높아지고 있다.
이에 문재인 정부는 서울 등 수도권과 부산 등 일부 지역을 대상으로 사회적 거리두기 단계를 2단계로 격상했다.
한편 중앙재난안전대책본부(중대본)에 따르면 국내 코로나 누적 확진자 수는 19일 기준으로 16,058명이고 이 중 해외유입 감염자 수는 2,676명이다.
지난 14일 이후 국내 지역 발생 신규확진자 수가 급증하고 향후 해외유입 확진자 수의 확산추세가 이어지면 국내 상황은 더욱 심각해질 수 밖에 없다.
이번 연구팀은 이러한 문제를 해결하기 위해 해외유입 확진자 수를 예측할 수 있는 관련 기술을 개발했다.
이번에 개발된 기술은 해외 각국의 확진자 수와 사망자 수, 해외 각국에서의 코로나19 관련 키워드 검색빈도와 한국으로의 일일 항공편 수, 해외 각국에서 한국으로의 로밍 고객 입국자 수 등 빅 데이터에 인공지능(AI) 기술을 적용해 향후 2주간의 해외유입 확진자 수를 예측한다.
연구과정을 보면 코로나19 위험도와 입국자 수를 실시간으로 알아내기에는 많은 제약이 따르므로 연구진은 쉽게 구할 수 있는 종류의 빅데이터를 기반으로 하는 인공지능(AI) 모델을 구축하는 데 성공했다.
먼저 해외유입 확진자 수는 다양한 요인에 의해서 영향을 받지만 해외 각국에서의 코로나19 위험도와 비례하며 해외 각국에서 한국으로의 입국자 수와도 비례한다고 가정했다.
이에 연구진은 기본적으로 해외 각국의 코로나19 위험도를 산출할 때 보고된 확진자 수와 사망자 수를 활용했다.
그러나 이러한 수치는 진단검사 수에 좌우되기 때문에 코로나19 관련 키워드 검색빈도를 같이 입력 데이터로 활용해 해당 국가의 코로나19 위험도를 실시간으로 산출했다.
이와 함께 실시간 입국자 수는 외부에 공개되지 않기 때문에 매일 제공되는 한국에 도착하는 항공편수와 로밍 고객 입국자 수를 통해 이를 유추해냈다.
또 로밍 고객 입국자 수 데이터는 KT로부터 제공 받았지만 KT 고객 입국자만을 포함한다는 한계를 일일 항공편수를 함께 고려함으로써 이 문제를 해소했다.
이밖에 해외유입 확진자 수 예측을 위해서는 국가 간의 지리적 연관성도 매우 중요하게 고려해야 한다.
이는 특정 국가의 코로나19 발병이 이웃 국가로 더 쉽게 전파되며 국가 간의 교류도 거리에 따라 영향을 받기 때문이다.
이러한 문제해결을 위해 지리적 연관성을 학습하도록 국가-대륙으로 구성되는 지리적 계층구조에 따라 우선 각 대륙으로부터의 해외유입 확진자 수를 예측함으로써 궁극적으로 전체 해외유입 확진자 수를 정확히 예측하도록 하는 인공지능(AI) 모델인 ‘Hi-COVIDNet’을 설계했다.
이후 연구팀은 약 한 달 반에 걸친 단기간의 훈련 데이터만으로 생성된 ‘Hi-COVIDNet’을 통해 향후 2주 동안의 해외유입 확진자 수를 예측한 결과 이 모델이 기존의 시계열 데이터 기반의 예측 기계학습이나 딥러닝 기반의 모델과 비교했을 때 최대 35% 더 높은 정확성을 지니고 있음을 확인했다.
제1저자인 김민석 박사과정 학생은 “이번 연구는 최신 AI 기술을 코로나19 방역에 적용할 수 있음을 보여준 사례” 라며 “K-방역의 위상을 높이는데 기여할 것으로 기대한다”고 말했다.
KAIST 지식서비스공학대학원에 재학 중인 김민석 박사과정 학생이 제1저자로, 강준혁, 김도영, 송환준, 민향숙, 남영은, 박동민 학생이 각각 참여한 결과는 최고 권위 국제 학술대회 ‘ACM KDD 2020’의 ‘AI for COVID-19’ 세션에서 오는 24일 발표된다.
이 연구는 KAIST 글로벌전략연구소의 코로나19 AI 태스크포스팀의 지원을 받았고 KT와 과학기술정보통신부의 코로나19 확산예측 연구 얼라이언스를 통해 로밍 데이터 세트를 지원받아 이뤄졌다.