주메뉴 바로가기 본문 바로가기

뉴스프리존

수리연, 스마트 팩토리 ‘불량 생산품 검출’ 알고리즘 개..
지역

수리연, 스마트 팩토리 ‘불량 생산품 검출’ 알고리즘 개발...7배 이상 속도 향상

이기종 기자 dair0411@gmail.com 입력 2020/12/17 11:14 수정 2020.12.17 13:49
국가수리과학연구소는 지능형 공장(스마트 팩토리)의 제조 공정에서 발생하는 불량 생산품 검출을 위한 이상감지 알고리즘 최적화 산업문제를 해결했다./ⓒ 수리연
국가수리과학연구소는 지능형 공장(스마트 팩토리)의 제조 공정에서 발생하는 불량 생산품 검출을 위한 이상감지 알고리즘 최적화와 관련한 기업의 문제를 해결했다./ⓒ 수리연

[대전=뉴스프리존] 이기종 기자= 국가수리과학연구소는 지능형 공장(스마트 팩토리)의 제조 공정에서 발생하는 불량 생산품 검출을 위한 이상감지 알고리즘 최적화와 관련한 기업의 문제를 해결했다고 17일 밝혔다.

산업수학을 통해 기업 등의 다양한 산업 문제 해결을 수행하고 있는 수리연은 지난 1월 지능형 공장 관련 솔루션 개발 기업으로부터 '로봇 상태 모니터링을 위한 센서 데이터 분석'의 산업문제를 의뢰받았다.

해당 기업은 지능형 공장 제조 공정의 센서 데이터 분석을 통해 생산품 불량을 감지하고 기계의 상태 이상을 실시간으로 모니터링하는 솔루션을 개발·운영하고 있다.

실제 공장에서 수집 가능한 데이터의 특성상 많은 양의 불량 데이터를 확보하기 어렵기 때문에 해당 기업에서는 제조 공정 센터 데이터의 정상 생산품 데이터만을 활용해 이상을 감지하는 OCC(One Class Classificaion) 문제를 의뢰했다.

이에 수리연 연구진은 RCF(Random Cut Forest) 알고리즘을 센서 데이터 OCC 문제에 적용하는 것을 제안했으며 이를 최적화하기 위한 연구를 진행해왔다.

기존 RCF 알고리즘은 느린 구동 속도와 모델 사이즈가 공정별 기가 단위 이상으로 너무 크다는 문제를 갖고 있었기 때문에 수백 개가 넘는 다양한 공정에 적용하기에 한계를 갖고 있었다.

연구과정을 보면 먼저 해당 알고리즘의 수학적 분석을 통해 이상 스코어링에 필요한 연산 과정을 최적화했다.

이후 새로운 생산품 샘플 데이터의 이상 스코어링을 얻기 위해서는 새로운 데이터를 반영한 변형된 새로운 트리를 만들어야 하고 연산 시간이 소요되는데, 이 트리 생성 과정을 생략하여 이상 스코어를 구할 수 있는 방법을 찾아 제시했다.

또 데이터 특징 샘플링을 적용한 이상감지 방법을 제시하여 성능이 개선된 빠르고 가벼운 이상감지 모델을 개발했다.

이 연구결과에 의하면 데이터 특징에 대한 임의적 샘플링을 통해 데이터 사이즈를 줄이고 랜덤 트리를 만드는 방식으로 7배 이상의 속도 향상과 모델의 크기를 줄였고 이로 인해 기존 RCF보다 세밀한 이상 감지를 확인하는데 더 효과가 있음을 확인했다.

한편 해당 기업은 중소벤처기업부가 구축 중인 AI 중소벤처 제조 플랫폼(KAMP) 시스템에 제조 AI 빅데이터 분석 알고리즘 탑재 추진을 목표로 하고 있으며 이번 수리연이 제공한 알고리즘을 2021년 상반기 내 이상감지 솔루션에 도입 완료할 계획이다.

김민중 수리연 산업수학혁신센터장은 “이번에 연구개발한 알고리즘은 생산 공정뿐만 아니라 다양한 산업분야의 이상감지 문제에도 적용 가능한 기술로서 향후 범용적으로 활용될 수 있을 것으로 기대된다”고 말했다.

저작권자 © 뉴스프리존 무단전재 및 재배포 금지